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SOLUTIONS TO CHAPTER 1 PROBLEMS

 

1.1

 

Computing power increases by a factor of 2 every 18 months, which generalizes to a factor of 2

 

x

 

every 18

 

x

 

 months. If we want to figure the time at which computing power increases by a factor of
100, we need to sove 2

 

x

 

 = 100, which reduces to 

 

x

 

 = 6.644. We thus have 18

 

x

 

 = 18

 

×

 

(6.644 months) =
120 months, which is 10 years.

 

SOLUTIONS TO CHAPTER 2 PROBLEMS

 

2.1

 

(a) [+999.999, –999.999]

(b) .001 (Note that 

 

error

 

 is 1/2 the precision, which would be .001/2 = .0005 for this problem.)

 

2.2

 

(a) 101111

(b) 111011

(c) 531

(d) 22.625

(e) 202.22

 

2.3

 

(a) 27

(b) 000101

(c) 1B

(d) 110111.111

(e) 1E.8

 

2.4

 

2

 

×

 

3

 

-1

 

 + 0

 

×

 

3

 

-2

 

 + 1

 

×

 

3

 

-3

 

 = 2/3 + 0 + 1/27 = 19/27
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2.5

 

37.3

 

2.6

 

(17.5)

 

10

 

 

 

≅

 

 (122.11)

 

3

 

 = (17.4)

 

10

 

2.7

 

–8

 

2.8

 

0

 

2.9

 

0011 0000 0101

 

2.10

 

0110 1001 0101

 

2.11

 

One’s complement has two representations for zero, whereas two’s complement has one represen-
tation for zero, thus two’s complement can represent one more integer.

 

2.12

2.13

2.14

 

(a) -.02734375

(b) (14.3)

 

6

 

 = (10.5)

 

10

 

 = (A.8)

 

16

 

 = .A8 

 

×

 

 16

 

1

 

 = 

0 1000001 10101000 00000000 00000000

 

2.15

 

(a) decrease; (b) not change; (c) increase; (d) not change

 

2.16

 

(a) –.5; (b) decrease; (c) 2

 

–5

 

; (d) 2

 

–2

 

; (e) 33

Largest number

Smallest number

No. of distinct numbers

5-bit signed magnitude 5-bit excess 16

+15

–15

31

+15

–16

32

–1.0101 × 2-2

Floating point representationBase 2 scientific notation
Sign Exponent Fraction

+1.1 × 22

0

1

001

110

0000

1111

+1.0 × 2–2

–1.1111 × 23

0 101 1000

1 001 0101
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2.17

 

(107.15)

 

10

 

 = 1101011.00100110011001100 

 0 1000111 11010110 01001100 11001100

 

2.18

 

(a) +1.011 

 

×

 

 2

 

4

 

(b) -1.0 

 

×

 

 2

 

1

 

(c) -0

(d) -

 

∞

 

(e) +NaN

(f ) +1.1001 

 

×

 

 2

 

-126

 

(g) +1.01101 

 

×

 

 2

 

-124

 

2.19

 

(a) 0 10000100 1011 0000 0000 0000 0000 000

(b) 0 00000000 0000 0000 0000 0000 0000 000

(c) 1 01111111110 0011 1000 0000 0000 0000

      0000 0000 0000 0000 0000 0000 0000 0000

(d) 1 11111111 1011 1000 0000 0000 0000 000

 

2.20

 

(a) (2 – 2

 

-23

 

) 

 

×

 

 2

 

127

 

(b) 1.0 

 

×

 

 2

 

-126

 

(c) 2

 

-23

 

 

 

×

 

 2

 

-126

 

 = 2

 

-149

 

(d) 2

 

-23

 

 

 

×

 

 2

 

-126

 

 = 2

 

-149

 

(e) 2

 

-23

 

 

 

×

 

 2

 

127

 

 = 2

 

104

 

(f ) 2 

 

×

 

 (127 – -126 + 1) 

 

×

 

 1 

 

×

 

 2

 

23

 

 + 1 = 254 

 

×

 

 2

 

24

 

 + 1

 

2.21

 

The distance from zero to the first representable number is greater than the gap size for the same
exponent values.

 

2.22

 

If we remove the leftmost digit, there is no way to know which value from 1 to 15 should be
restored.

 

2.23

 

No, because there are no unused bit patterns.

 

2.24

 

No.  The exponent determines the position of the radix point in the fixed point equivalent repre-
sentation of a number.  This will almost always be different between the orginal and converted num-
bers, and so the value of the exponent will be different in general.
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SOLUTIONS TO CHAPTER 3 PROBLEMS

 

3.1

3.2

 

- 1 1 0 0 <-- borrows
- 0 1 0 1
- 0 1 1 0
__________

1 1 1 1 1 (No overflow)
^
|__ borrow is discarded in a two’s complement representation

 

3.3

 

Two’s complement One’s complement
+ 1 0 1 1.1 0 1 + 1 0 1 1.1 0 1
+ 0 1 1 1.0 1 1 + 0 1 1 1.0 1 1
_______________ _______________

+ 0 0 1 1.0 0 0 (no overflow) + 0 1 0 0.0 0 0 (no overflow)

 

Note that for the one’s complement solution, that the end-around carry is added into the 1’s posi-

  1 0 1 1 0
+ 1 0 1 1 1

  0 1 1 0 1

Overflow

  1 1 1 1 0
+ 1 1 1 0 1

  1 1 0 1 1

No overflow

  1 1 1 1 1
+ 0 1 1 1 1

  0 1 1 1 0

No overflow
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tion.

 

3.4

3.5

C

0

0
0
0
0
0
0

0

A

0 0 0

1 0 1 0
0 1 0 1
0 0 1 0
1 1 0 0
0 1 1 0
0 0 1 1

0

Q

1 0 1

0 1 0 1
0 0 1 0
1 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

Multiplicand (M):

1 0 1 0
Initial values

Add M to A
Shift
Shift

Shift
Add M to A

Shift

Product

C

0

0
0
1
0
0
0

A

0 0 0

1 1 1
0 1 1
0 1 0
1 0 1
0 1 0
0 1 0

Q

0 1 1

0 1 1
1 0 1
1 0 1
0 1 0
1 0 1
1 0 1

Multiplicand (M):

1 1 1
Initial values

Add M to A
Shift Right
Add M to A

Shift Right
Shift Right

Fix Decimal

Product

.
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3.6

0

0
1

0
0

0

A

0 0 0

0 0 0 1
1 1 0 0

0 1 0 1
0 0 0 0

1

Q

0 1 0

0 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0

Divisor (M):

0 1 0 1
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 1 0 1 0 0 Restore A

0
1

0 0 1 0
1 1 0 1

1 0 0 0
1 0 0 0

Shift left
Subtract M from A

0 0 0 1 0 1 0 0 0 Restore A

0 0 0 0 1 0 1 0 0 Clear q0

0 0 0 1 0 1 0 0 0 Clear q0

0 0 0 0 0 0 0 0 1 Set q0
0
1

0 0 0 0
1 0 1 1

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 0 0 0 0 1 0 Restore A
0 0 0 0 0 0 0 1 0 Clear q0

Remainder Quotient

0
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3.7

3.8

 

c

 

4

 

 = 

 

G

 

3

 

 + 

 

P

 

3

 

G

 

2

 

 + 

 

P

 

3

 

P

 

2

 

G

 

1

 

 + 

 

P

 

3

 

P

 

2

 

P1G0 + P3P2P1P0

3.9 (a) The carry out of each CLA is generated in just three gate delays after the inputs settle. The
longest path through a CLA is five gate delays. The longest path through the 16-bit CLA/ripple adder
is 14 (nine to generate c12, plus five to generate s15).

(b) s0 is generated in just two gate delays.

(c) s12 is generated in 11 gate delays. It takes 3 gate delays to generate c4, which is needed to gen-
erate c 3 gate delays later, which is needed to generate c12 3 gate delays after that, for a total of 9 gate
delays before c12 can be used in the leftmost CLA. The s12 output is generated 2 gate delays after that,
for a total of 11 gate delays.

0

0
1

0
0

0

A

0 0 0

0 0 0 1
1 1 0 1

0 1 0 1
0 0 0 1

1

Q

0 1 0

0 1 0 0
0 1 0 0

0 0 0 0
0 0 0 0

Divisor (M):

0 1 0 0
Initial values

Shift left
Subtract M from A

Shift left
Subtract M from A

0 0 0 0 1 0 1 0 0 Restore A

0
1

0 0 1 0
1 1 1 0

1 0 0 0
1 0 0 0

Shift left
Subtract M from A

0 0 0 1 0 1 0 0 0 Restore A

0 0 0 0 1 0 1 0 0 Clear q0

0 0 0 1 0 1 0 0 0 Clear q0

0 0 0 0 1 0 0 0 1 Set q0
0
1

0 0 1 0
1 1 0 0

0 0 1 0
0 0 1 0

Shift left
Subtract M from A

0 0 0 1 0 0 0 1 0 Restore A
0 0 0 1 0 0 0 1 0 Clear q0

Quotient

0

0
0

0 1 0 0
0 0 0 0

0 1 0 0
0 1 0 0

Shift left
Subtract M from A

0 0 0 0 0 0 1 0 1 Set q0, fix decimal.
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3.10

3.11

3.12 The carry bit generated by the ith full adder is: ci = Gi + PiGi-1 + ...+ PiP1G0. The Gi and Pi bits
are computed in one gate delay. The ci bit is computed in two additional gate delays. Once we have ci,
the sum outputs are computed in two more gate delays. There are 1 + 2 + 2 = 5 gate delays in any carry
lookahead adder regardless of the word width, assuming arbitrary fan-in and fan-out.

3.13 Refer to Figure 3-21. The OR gate for each ci has i inputs. The OR gate for c32 has 32 inputs.
No other logic gate has more inputs.

×

0
0

1 0 0 1
1 1 0 1

1
1

Multiplicand
Multiplier

+1 0 −1 +1 0 −1 Booth coded multiplier

Booth algorithm:
Scan multiplier from right to left.
use −1 for a 0 to 1 transition;
use −1 for the rightmost 1;
use +1 for a 1 to 0 transition;
use 0 for no change.

0 1 0 0 1 1 Multiplicand
+1 0 −1 +1 0 −1 Booth coded multiplier

1
0
0
0

0
0
0
0

1
1
0
0

1
1
1
0

0
0
0
0

1
0
1
1

1
1
1
1

1
0
0
0

1
0
1
0

1
0
1
1

1
0
1
0+

10000000010

Negative multiplicand
Multiplicand shifted left by 2
Negative multiplicand shifted left by 3
Multiplicand shifted left by 5

Product

×

0
0

1 0 0 1
1 1 0 1

1
1

Multiplicand
Multiplier

+1 0 −1 +1 0 −1 Booth coded multiplier

0 1 0 0 1 1 Multiplicand
+2 −1 −1

1
0
0

0
0
0

1
1
0

1
0
0

0
1
0

1
1
1

1
0
1

1
1
0

1
1
0

1
1
1

1
1
0+

10000000010

(−1 × 19 × 1)
(−1 × 19 × 4)
(+2 × 19 × 16)

Product

+2 −1 −1 Bit-pair recoded multiplier

Bit-pair recoded multiplier

1
1
0

0
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3.14 (a)

(b) Assume that a MUX introduces two gate delays as presented in Chapter 3. The number of
gate delays for the carry lookahead approach is 8 (c4 is generated in three gate delays, and s7 is gener-
ated in five more gate delays). For the carry-select configuration, there are five gate delays for the
FBAs, and two gate delays for the MUX, resulting in a total of 5 + 2 = 7 gate delays.

3.15 3p

3.16 There is more than one solution. Here is one: The basic idea is to treat each 16-bit operand as if
it is made up of two 8-bit digits, and then perform the multiplication as we would normally do it by
hand. So, A0:15 = A8:15A0:7 = AHIALO and B0:15 = B8:15B0:7 = BHIBLO, and the problem can then be
represented as:

b0 a0b1 a1b2 a2b3 a3

c4

0
c0

Four-Bit Adder (FBA)

b4 a4

s4

b5 a5

s5

b6 a6

s6

b7 a7

s7

Four-Bit Adder (FBA)

c8

s0s1s2s3
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3.17 Two iterations.

3.18

3.19

SOLUTIONS TO CHAPTER 4 PROBLEMS

4.1 24

4.2 Lowest: 0; Highest: 218 – 1

This is not a byte addressable architecture and so all addresses are in units of words, even though we

ALO

BLOBHI

AHI

×

ALOBLO ×

BLO ×

ALO×

×

AHI

BHI

BHI AHI

32-bit sum of partial products

+

+

+

+

8 bits

16-bit partial 
products

32-bit product

Adder

Adder

Adder

Multipliers

0

0

BHI AHI BLOALO

8
8

8

8

16
16 16

16

8

8

16

8
8

16

bits 0:7

bits 8:15

bits 0:7bits 8:15

×BHI AHI ALO×BHI ALOBLO ×BLO × AHI

  0110 0100 0001
+ 0010 0101 1001

  1001 0000 0000

  0000 0001 0010 0011
+ 1001 1000 0010 0010

  1001 1001 0100 0101



SOLUTIONS TO PROBLEMS 579

might think of words in terms of 4-byte units.

4.3 (a) Cartridge #1: 216 bytes; cartridge#2: 219 – 217 bytes.

(b) [The following code is inserted where indicated in Problem 4.3.]

orncc %r4, %r0, %r4 ! Form 1's complement of old_y

addcc %r4, 1, %r4 ! Form 2's complement of old_y

addcc %r2, %r4, %r4 ! %r4 <- y - old_y

be loop

4.4

.begin

.org 2048

swap: ld [x], %r1

ld [y], %r2

st %r1, [y]

st %r2, [x]

jmpl %r15 + 4, %r0

x: 25

y: 50

.end

4.5 (a) The code adds 10 array elements stored at a and 10 array elements stored at b, and
places the result in the array that starts at c.

For this type of problem, study the logical flow starting from the first instruction. The first line loads
k=40 into %r1. The next line subtracts 4 from that, leaving 36 in %r1, and the next line stores that
back into k. If the result (+36 at this point) is negative, then bneg branches to X which returns to the
calling procedure via jmpl. Otherwise, the code that follows bneg executes, which adds correspond-
ing elements of arrays a and b, placing the results in array c.
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4.6

(b) Note: There is more than one correct solution.

4.7 The code adds 10 array elements stored at a and 10 array elements stored at b, and places the

result in the array that starts at c.

4.8 All instructions are 32 bits wide. 10 of those bits need to be used for the opcode and destination
register, which leaves only 22 bits for the imm22 field.

4.9 The convention used in this example uses a “hardwired” data link area that begins at location
3000. This is a variation to passing the address of the data link area in a register, which is done in the
example shown in Figure 4-16.

4.10 The SPARC is big-endian, but the Pentium is little-endian. The file needs to be “byte-swapped”
before using it on the other architecture (or equivalently, the program needs to know the format of the
file and work with it as appropriate for the big/little-endian format.)

Opcode Src 
Mode

Source Dst
Operand/Address

Dst
Mode

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

Opcode Src 
Mode

Source Dst
Operand/Address

Dst
Mode

0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 1 0 0 0 0 1 0 0 0 1 1 0 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1

0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0

(1)

0

232–1

Free area

%sp

Stack

a
b

(2) (3)

0

232–1

Free area

Stack

0

232–1

%sp
Free area

%sp
Stack

a
b
c

%r15
m

c

n
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4.11

aload_0

invokespecial 3 // Same as: invokespecial <init>

return

4.12 Notice that the first line of the bytecode program in Figure 4-24 begins with the hexadecimal
word cafe at address 0 and babe at address 2. The text describes the “magic number 0xcafebabe”
used to identify a Java program. Since the most significant bits (cafe) of the 32-bit magic number are
stored at the lower address, the machine must be big-endian. (Note that on a little-endian machine the
number would display as bebafeca. Not nearly so interesting a word.)

4.13

main:
        mov     15,%r16
        mov     9,%r17
        st      %r16,[%sp+68]    ! 15 on stack
        st      %r17,[%sp+72]    ! 9 on stack
        call    addtwoints
        nop
ld      [%sp-4],%r9     ! result loaded from stack to %r9
!       printf("ans is %d \n", result);
!       printf expects value in %r9 and format string in %r8.
        sethi   %hi(.L17),%r8
        or      %r8,%lo(.L17),%r8
        call    printf
        nop
        jmp     %r31+8

        ...

addtwoints:
        ld      [%fp+68],%r16    ! first parameter in %r16
        ld      [%fp+72],%r17    ! second parameter in %10

        add     %r16,%r17,%r16
        st      %r16,[%fp-4]     ! result on stack
        nop
        jmp     %r31+8

4.14 a) 13 (instruction fetches) + 5 (stack pushes) + 4 (stack pops) + 3 (stack add) = 25 bytes.
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b) [Placeholder for missing solution.]

4.15 It is doubtful that a bytecode program will ever run as fast as the equivalent program written in
the native language. Even if the program is run using a just-in-time (JIT) compiler, it still will use
stack-based operations, and will thus not be able to take advantage of the register-based operations of
the native machine.

4.16

3-address: 2-address 1-address
SUB B, C, A MOV B, A LOAD B
SUB D, E, Tmp SUB C, A SUB C
MPY  A, Tmp, A MOV D, Tmp STO Tmp

SUB E, Tmp LOAD D
MPY Tmp, A SUB E

MPY Tmp
STO A

Size: 7×3=21 bytes 5×5 = 25 bytes 3×7 = 21 bytes.

Traffic: 3×4+3×3 = 21 wds. 5×3 + 2×2 7×2 + 7 = 21 wds.
+ 3×3 = 28 wds.

4.17

ld [B], %r1
ld [C], %r2
ld [D], %r3
ld [E], %r4
subcc %r1, %r2, %r2
subcc %r3, %r4, %r4
smul %r2, %r4, %r4
st %r4, [A]

Size: 8 32-bit words. Traffic: 8 + 4 +1 = 13 32-bit words. Note how the load-store, general register
architecture leads to less memory traffic than either of the architectures in the exercise above.
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SOLUTIONS TO CHAPTER 5 PROBLEMS

5.1 The symbol table is shown below. The basic approach is to create an entry in the table for each
symbol that appears in the assembly language program. The symbols can appear in any order, and a
simple way to collect up all of the symbols is to simply read the program from top to bottom, and
from left to right within each line. The symbols will then be encountered in the order: x, main,
lab_4, k, foo, lab_5, and cons. Of these labels, x, main, lab_4, foo, and cons are defined
in the program. k and lab_5 are not defined and are marked with a U. Excluded from the symbol
table are mnemonics (like addcc), constants, pseudo-ops, and register names. 

x has the value 4000 because .equ defines that. main is at location 2072, and so it has that value in
the symbol table. lab_4 is 8 bytes past main (because each instruction is exactly 4 bytes in size) and
so lab_4 is at location 2800, etc.

5.2 Notice that the rd field for the st instruction in the last line is used for the source register.

10001000 10000001 00100100 00000000

11001010 00000011 10000000 00000000

10011100 10000011 10111111 11111111

11001010 00100000 00110000 00000000

5.3 [Placeholder for missing solution.]

5.4

3072: 10001100 10000000 10000000 00000100

3076: 00001010 10000000 00000000 00000011

3080: 10001010 10000000 01000000 00000011

Symbol Value

main 2072

lab_4 2080

k U

foo 2088

x 4000

lab_5 U

cons 2104
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3084: 10000001 11000011 11100000 00000100

3088: 10001010 10000000 01000000 00000011

3092: 00001010 10000000 00000000 00000011

3096: 10001010 10000001 01100000 00000001

3100: 10000001 11000011 11100000 00000100

3104: 10001010 10000001 01100000 00000001

3108: 00001111 00111111 11111111 11111111

3112: 10000000 10000001 11000000 00000111

3116: 10000001 11000011 11100000 00000100

3120: 00000000 00000000 00000000 00000000

3124: 00000000 00000000 00000000 00011001

3128: 11111111 11111111 11111111 11111111

3132: 11111111 11111111 11111111 11111111

3136: 00000000 00000000 00000000 00000000

3140: 00000000 00000000 00000000 00000000

5.5

b: addcc %r1, 1, %r1

orcc %r5, %r6, %r0

be a

srl %r6, 10, %r6

ba b

a: jmpl %r15 + 4, %r0

5.6

ld %r14, %r1

addcc %r14, 4, %r14 ! This line can be deleted

addcc %r14, -4, %r14 ! This line can be deleted

st % r2, %r14
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5.7

.macro return

jmpl %r15 + 4, %r0

.endmacro

5.8

.

.

.

st %r1, [x]

st %r2, [x+4]

sethi .high22(x), %r5

addcc %r5, .low10(x), %r5

call add_2

ld [x+8], %r3

.

.

.

x: .dwb 3

5.9

.begin

.org 2048

add_128: ld [x+8], %r1 ! Load bits 32-63 of x

ld [x+12], %r2 ! Load bits 0 - 31 of x

ld [y+8], %r3 ! Load bits 32 - 63 of y

ld [y + 12], %r4 ! Load bits 0 -31 of y

call add_64 ! Add lower 64 bits

st %r5, [z + 8] ! Store bits 32 - 63 of result

st %r6, [z + 12] ! Store bits 0 - 31 of result
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bcs lo_64_carry

addcc %r0, %r0, %r8 ! Clear carry

ba hi_words

lo_64_carry: addcc %r0, 1, %r8 ! Set carry

hi_words:ld [x], %r1 ! Load bits 96 - 127 of x

ld [x + 4], %r2 ! Load bits 64-95 of x

ld [y], %r3 ! Load bits 96 - 127 of y

ld [y + 4], %r4 ! Load bits 64 - 95 of y

call add_64 ! Add upper 64 bits

bcs set_carry

addcc %r6, %r8, %r6 ! Add in low carry

st %r5, [z] ! Store bits 96 - 127 of result

st %r6, [z + 4] ! Store bits 64 - 95 of result

jmpl %r15 + 4, %r0 ! Return

set_carry:addcc%r6, %r8, %r6 ! Add in low carry

st %r5, [z] ! Store bits 96 - 127 of result

st %r6, [z + 4] ! Store bits 64 - 95 of result

sethi #3FFFFF, %r8

addcc %r8, %r8, %r0 ! Restore carry bit

jmpl %r15 + 4, %r0 ! Return

x: .dwb 4

y: .dwb 4

z: .dwb 4

.end

5.10 Note: In the code below, arg2 must be a register (it cannot be an immediate).

.macro subcc arg1, arg2, arg3

orncc arg2, %r0, arg2

addcc arg2, 1, arg2

addcc arg1, arg2, arg3
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.endmacro

Note that this coding has a side effect of complementing arg2.

5.11 All macro expansion happens at assembly time.

5.12 The approach allows an arbitrary register to be used as a stack, rather than just %r14. The dan-
ger is that an unwitting programmer might try to invoke the macro with a statement such as push X,
Y. That is, instantiating a stack at memory location Y. The pitfall is that this will result in an attempt to
define the assembly language statement addcc Y, -4, Y, which is illegal in ARC assembly lan-
guage.

SOLUTIONS TO CHAPTER 6 PROBLEMS

6.1

6.2 There is more than one solution, especially with respect to the choice of labels at the MUX

Z

Carry 
Out

Output

Full
Adder

X Y

Carry In

Carry Out Sum

A

B

Carry 
In

Data 
Inputs

F0

F1

00

01

10

11

2-to-4 Decoder

Function 
Select

0
0
1
1

0
1
0
1

Fo F1

ADD(A,B)
AND(A,B)
OR(A,B)
NOT(A)

Function
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inputs. Here is one solution:

6.3

6.4 Register %r0 cannot be changed, and so there is no need for it to have a write enable line.

6.5 (a) 

ALU0

y0 x0

z0

y1 x1

z1

y2 x2

z2

y3 x3

z3

ALU1ALU2ALU3
c0
c1

y4 x4

z4

ALU4

y5 x5

z5

ALU5

y6 x6

z6

ALU6

y7 x7

z7

ALU7

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

yi xi

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c0

0
0
0
1
0
1
1
1
1
0
0
0
0
1
1
0

zi

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

c1

c0 xi

zi

000

001

010

011

yi

100

101

110

111

c1

0

0

c1

0

1

1

c1

A B
00/00

11/11
00/11

Not
halted

Halted

01/01
10/10

01/11
10/11
11/11

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

0 1 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 1 0 0
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(b) 

6.6

6.7

6.8
1280: R[15] <- AND(R[pc], R[pc]); / Save %pc in %r15

1281: R[temp0] <- LSHIFT2(R[ir]); / Shift disp30 left two bits
1282: R[pc] <- ADD(R[pc], R[temp0]); / Jump to subroutine
      GOTO 0;

6.9 Either seven or eight microinstructions are executed, depending on the value of IR[13]:

IR[13] = 0: (Eight microinstructions) 0, 1, 1584, 1585, 1586, 1587, 1603, 2047.

IR[13] = 1: (Seven microinstructions) 0, 1, 1584, 1586, 1587, 1603, 2047.

6.10 (a) (11 microinstructions): 0, 1, 1088, 2, 3, 4, 5, 6, 7, 8, 12.

F0 F10 1 2 30 1 2 30 1 2 3
Write Enables A-bus enables B-bus enables

Time

0

1

2

0 0 1 0 1 0 0 0 0 0 0 0 1 0

1 0 0 0 0 1 0 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1

0 0 1 0 0 0 1 0 0 1 0 0 0 1

0 0 1 0 0 0 1 0 0 0 0 0 1 1

1 0 0 0 1 0 0 0 0 0 1 0 0 1

1 0 0 0 1 0 0 0 0 0 0 0 1 1

3

4

5

6

7

8

r0 ⊕ r1 = r0r1 + r0r1 = r0r1 +r0 r1 = r0 r1 r0r1

r0 r1 r0r1

Save r0

Compute

Compute

Compute

Compute

Compute

Compute

Compute

Compute

r0 r1 r0r1

r r0 1

r r0 1

r r0 1

r0

r r0 1

r1

R
D

W
RCA B JUMP ADDRALU COND

A
M
U
X

B
M
U
X

C
M
U
X

0000001 000101 0001000011101000001000000
0000010 000000 0000100110100000000000000

60
61

0
0

0
0

0
0

R[temp0] ← SEXT13(R[ir]);
R[temp0] ← ADD(R[rs1],R[temp0]); GOTO 1793;
R[temp0] ← ADD(R[rs1],R[rs2]); IF IR[13] THEN GOTO 1810;
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(b) 0, 1, 2, 19

6.11

6.12 000000, or any bit pattern that is greater than 3710.

6.13 There is more than one solution. Here is one:

6.14
1612: IF IR[13] THEN GOTO 1614;   / Is second source operand immediate?

1613: R[temp0] <- R[rs2];  / Get B operand in temp0
      GOTO 1615;
1614: R[temp1] <- SIMM13(R[ir]);  / Get A operand in temp1
      GOTO 21;
1615: R[temp1] <- R[rs1]; GOTO 21;
21: R[temp2] ← NOR(R[temp0], R[temp0]); / Get complement of B in temp2
22: R[temp3] ← NOR(R[temp1], R[temp1]); / Get complement of A in temp3

A31

B31

A30

B30

A0

B0

. . .

A bus enable (from 
a0 bit of A Decoder)

B bus enable (from 
b0 bit of B Decoder)

. . .

Data outputs to B Bus

Data outputs to A Bus

0 0 0

ROM ContentsAddress

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

A B C D

V W X S

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0 1 1

1 0 0

0 1 1

1 0 0

0 1 1

1 0 0

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1

0 1 1
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23: R[temp1] ← NOR(R[temp1], R[temp2]); / temp1 gets AND(A, B')
24: R[temp2] ← NOR(R[temp0], R[temp3]); / temp2 gets AND(A’, B)
25: R[rd] ← ORCC(R[temp1],R[temp2]); GOTO 2047; / Extract rs2 operand

6.15

6.16 No.

6.17

Read (Peek at top of stack)

Data In

32

Data Out

Write

Clock

32

32

Top of Stack

32

Push

Pop

0

0

0

32

0

32

32

32

32

32

32

32

Cond
ALU A-Bus B-Bus C-Bus Jump Address Next Address

0

1

2

3

00 010 0 10 00 0 01 000 000 000 000 0 00 00 00 0 001

00 000 0 00 00 0 00 011 000 000 111 1 00 00 00 0 010

01 001 0 01 00 1 00 000 000 000 000 0 00 00 00 0 011

00 000 0 00 00 0 00 001 000 001 010 0 00 00 00 0 000
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6.18 No. After adding 1 to 2047, the 11-bit address wraps around to 0.

6.19 (a) 137 bits

(b) (211 words × 137 bits) / (211 words × 41 bits) = 334%

6.20

6.21 temp0 should be multiplied by 4 (by shifting temp0 to the left by two bits) before adding
temp0 to the PC in line 12.

SOLUTIONS TO CHAPTER 7 PROBLEMS

7.1

zi

0
0
1
1
1
1
0
0

Carry 
Out
0
0
0
0
0
0
1
1

zi

1
1
0
0
d
d
d
d

Carry 
Out
0
0
1
1
d
d
d
d

ALU LUT1 ALU LUT0

X(A0)
0 1

A: 00 B/0 B/1

P.S.

Input

B: 01
C: 10
D: 11

C/1 D/1
A/1 B/0
A/0 A/0

A1 A2
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7.2

7.3

7.4

00 00010000 00000100 00010100

F.S. A B Q
DataAddress

01 00010000 00000100 00001100
10 00010000 00000100 01000000
11 00010000 00000100 00000100

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

8×8 8×8 8×8 8×8

8

D31 ... D24

8

D23 ... D16

8

D15 ... D8

8

D7 ... D0

3
A0

A2

A1

WR
EN

Q31 ... Q24 Q23 ... Q16 Q15 ... Q8 Q7 ... Q0

8 8 8 8

4×4

4

D3 ... D0

A0

A2

A1

WR
EN

Q3 ... Q0

4

4×4

4×4

4×4

EN

EN

EN

00
01
10
11

A3

Enable

2-to-4 
decoder
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7.5

p

D4p-1 ... D3p

p

D3p-1 ... D2p

p

D2p-1 ... Dp

p

Dp-1 ... D0

log2n
Address

WR
EN

Q4p-1 ... Q3p Q3p-1 ... Q2p Q2p-1 ... Qp Qp-1 ... Q0

p p p p

(a)

(b)

n×p

p

Dp-1  ... D0

A0

A[log2n]

WR
EN

Qp-1  ... Q0

p

n×p

n×p

n×p

EN

EN

EN

00
01
10
11

Enable

2-to-4 
decoder

n×p n×p n×p n×p

A[log2n] + 1

A[log2n] − 1

...
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7.6

7.7 (a) 

(b)

# misses: 13 (on first loop iteration)

# hits: 173 (first loop)

# hits after first loop 9 × 186 = 1674

# hits total = 173 + 1674 = 1847

# accesses = hits + misses = 1860

hit ratio = 1847/1860 = 99.3%

a0

a1

d0

d1

d2

d3

d4

d5

d6

d7

a2

d8

d9

d10

d11

d12

d13

d14

d15

a3

7 7 4

Tag Slot Word
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(c) Avg. access time = [(1847)(10 ns) + (13)(210 ns)]/1860

= 11.4 ns

7.8 (a) The number of blocks in main memory is 216/8 = 213. The tag field is 13 bits wide and the
word field is three bits wide.

(b) Addresses 20-45 lie in four different main memory blocks. When the program executes, there
will be four misses and 94 hits. Hit ratio = 94/98 = 95.9%.

(c) The total access time for the program is 4(1040 ns) + 94(40 ns) = 7920 ns. Average access
time = 7920/98 = 80.82 ns.

7.9 Associative = (8 × 32 + 29) × 214; Direct = (8 × 32 + 15) × 214

7.10 (a) The size of the cache is 214 slots × 25 words/block = 219 words, which is the minimum spac-
ing needed to suffer a miss on every cache access.

(b) Every cache access causes a miss, and so the effective access time is 1000 ns.

7.11 (a) LRU 0  2  4  5  2  4  3 11 2 10

Misses: ↑XX↑XX↑XX↑XXXXXXXX↑XX↑XXXX↑

(b) FIFO 0  2  4  5  2  4  3 11 2 10

Misses: ↑XX↑XX↑XX↑XXXXXXXX↑XX↑X↑XX↑

7.12 If the page table is swapped out to disk, then the next memory address will cause a fault because
the memory manager needs to know the physical location of that virtual address, and since the page
table is on disk, the memory manager does not know where to get the page that contains the page
table. An infinite sequence of page faults will occur. Using the LRU page replacement policy will pre-
vent this from happening since the page containing the page table will always be in memory, but this
will only work if the page table is small enough to fit into a single page (which it usually is not).

7.13 (a) 1024

(b) It is not in main memory.

13 3

Tag Word
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(c) Page frame 2

7.14 (a) (N – M) / N

(b) (M – F) / M

(c) [(N – M)T1 + (M – F)T2 + FT3]/N

7.15 Virtual addresses tend to be large (typically 32 bits). If virtual addresses are cached, then the tag
fields will be correspondingly large as well as the hardware that looks at the tags. If physical addresses
are cached, then every memory reference will go through the page table. This slows down the cache,
but the tag fields are smaller, which simplifies the hardware.

If we cluster the virtual memory and cache memory into a single memory management unit (MMU),
then we can cache physical addresses and simultaneously search the cache and the page table, using the
lower order bits of the address (which are identical for physical and virtual addresses). If the page table
search is successful, then that means the corresponding cache block (if we found a block) is the block
we want. Thus, we can get the benefits of small size in caching physical addresses while not being
forced to access main memory to look at the page table, because the page table is now in hardware.
Stated more simply: this is the purpose of a translation lookaside buffer.

7.16 There are 232 bytes / 212 bytes/page = 220 pages. There is a page table entry for each page, and so
the size of the page table is 220 × 8 bytes = 223 bytes.

7.17 For the 2D case, each AND gate of the decoder needs a fan-in of 6, assuming the decoder has a
form similar to Figure 7-4. There are 26 AND gates and 6 inverters, giving a total gate input count of
26 × 6 + 6 = 390 for the 2D case. For the 2-1/2D case, there are two decoders, each with 23 AND
gates and 3 inverters, and a fan-in of 3 to the AND gates. The total gate input count is then 2 × (23 ×
3 + 3) = 54 for the 2-1/2D case.

7.18 log4(220) = 10

7.19 (a) 220

(b) 211

7.20 Words F1A0028 and DFA0502D

7.21 32
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SOLUTIONS TO CHAPTER 8 PROBLEMS

8.1 The slowest bus along the path from the Audio device to the Pentium processors is the 16.7
MB/sec ISA bus. The minimum transfer time is thus 100 MB/(16.7 MB/sec) = 6 sec.

8.2 Otherwise, a pending interrupt would be serviced before the ISR has a chance to disable inter-
rupts.

8.3

8.4 4.

8.5 (a) 

Width of storage area = 5 cm – 1 cm = 4 cm.

Number of tracks in storage = 4 cm × 10 mm/cm × 1/.1 tracks/mm = 400 tracks.

The innermost track has the smallest storage capacity, so all tracks will store no more data than
the innermost track. The number of bits stored on the innermost track is: 10,000 bits/cm × 2π × 1 cm
= 62,832 bits.

The storage per surface is: 62,832 bits/track × 400 tracks/surface = 25.13 × 106 bits/surface.

The storage on the disk is: 2 surfaces/disk × 25.13 × 106 bits/surface = 50.26 Mbits/disk.

(b) 62,832 bits/track × 1 track/rev × 3600 rev/min × 1/60 min/s = 3.77 Mbits/sec

8.6 In the worst case, the head will have to move between the two extreme tracks, at which point an
entire revolution must be made to line up the beginning of the sector with the position of the head.

Time

V
ol

ta
ge

1 0 0 1 1 1 0 1

ri = 1 cm

ro = 5 cm

ro − ri

ri
ro
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The entire sector must then move under the head. The worst case access time for a sector is thus com-
posed of three parts:

8.7 (a) The time to read a track is the same as the rotational delay, which is:

1/3600 min/rev × 1 rev/track × 60,000 ms/min = 16.67 ms.

(b) The time to read a track is 16.67ms (from 8.5a). The time to read a cylinder is 19 × 16.67 ms
= 316.67 ms. The time to move the arm between cylinders is:

.25 mm × 1/7.5 s/m × 1000 ms/s × 1/1000 m/mm = 1/7.5 ms = .033 ms.

The storage per cylinder is 300/815 MB/cyl = .37 MB/cyl.

The time to transfer the buffer to the host is:

1/300 s/KB × .37 MB/cyl × 1024 KB/MB = 1.26 seconds/cylinder.

We are looking for the minimum time to transfer the entire disk to the host, and so we can
assume that after the buffer is emptied, that the head is exactly positioned at the starting sector of the
next cylinder. The entire transfer time is then (.317s/cyl + 1.26 s/cyl) × 815 cyl = 1285 s, or 21.4 min.
Notice that the head movement time does not contribute to the transfer time because it overlaps with
the 1.26 buffer transfer time.

8.8 A sector can be read into the buffer in .1 revolutions (rev). The disk must then continue for .9
rev in order to align the corresponding sector on the target surface with its head. The disk then contin-
ues through another .1 rev to write the sector, at which point the next sector to be read is lined up with
its head, which is true regardless of which track the next sector is on. The time to transfer each sector
is thus 1.1 rev. There are 10,000 sectors per surface, and so the time to copy one surface to another is:

10,000 sectors × 1.1 rev/sector × 1/3000 min/rev = 3.67 min.

8.9 The size of a record is:

15 ms/head movement × 127 head movements  +

(1/3600 min/rev × 60,000 ms/min)(1 + 1/32) = 1922 ms

Seek time

Rotational delay Sector read time
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2048 bytes × 1/6250 in/byte = .327 in.

There are x records and x – 1 inter-record gaps in 600 ft, and so we have the relation:

(.327 in)(x) + (.5 in) (x – 1) = 600 ft × 12 in/ft = 7200 in.

Solving for x, we have x = 8706 (whole) records, which translates to: 8706 records × 2048
bytes/record = 17.8 MB.

8.10 The number of bits written to the display each second is 1024 × 1024 × 60 = 62,914,560 bits/s.
The maximum time allowed to write each pixel is then: 1/62,914,560 s/bit × 109 ns/s = 15.9 ns.

8.11 The LUT size = 28 words × 24 bits/word = 6144 bits, and the RAM size is 219 words × 8
bits/word = 4,194,304. Without a LUT, the RAM size is 219 words × 24 bits/word = 12,582,912 bits.
The increase in RAM size is 8,388,608 bits, which is much larger than the size of the LUT.

8.12 (a) We no longer have random access to sectors, and must look at all intervening sectors before
reaching the target sector.

(b) Disk recovery would be easier if the MCB is badly damaged, because the sector lists are dis-
tributed throughout the disk. An extra block is needed at the beginning of each file for this, but now
the MCB can have a fixed size.

8.13 The problem is that the data was written with the heads in a particular alignment, and that the
head alignment was changed after the data was written. This means that the beginning of each track
no longer corresponds to the relative positioning of each track prior to realignment. The use of a tim-
ing track will not fix the problem, unless a separate timing track is used for each surface (which is not
the usual case).

SOLUTIONS TO CHAPTER 9 PROBLEMS

9.1 Hamming distance = 3.
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9.2

9.3 (a) k + r + 1 ≤ 2r for k = 6. Simplifying yields: 7 + r ≤ 2r for which r = 4 is the smallest value that
satisfies the relation.

(b) 

(c) 11

(d) 101111011001

9.4 k + r + 1 ≤ 2r for k = 1024. Simplifying yields 1025 + r ≤ 2r for which r = 11 is the smallest value
that satisfies the relation.

9.5

9.6 (a) 4096

(b) 8

9.7 First, we look for errors in the check bit computations for the SEC code. If all of the check bit
computations are correct, then there are no single bit errors nor any double bit errors. If any of the
SEC check bit computations are wrong, then there is either a single bit error or a double bit error.

The DED parity bit creates even parity over the entire word when there are no errors. If the DED par-
ity computation is in error, then there is an odd number of errors, which we can assume is a single bit

1 0 1 0 0 0 0 0 1 0 1

11 10 9 8 7 6 5 4 3 2 1

C2 C1C8 C4

ASCII ‘Q’ = 1010001

1 0 1 1 1 0 0 0 1 1

10 9 8 7 6 5 4 3 2 1

C2 C1C8 C4

Code

1
1
1
1
1
1

Character

1
1
1
1
1
1

1
1
1
1
1
1

0
0
0
0
0
0

0
0
0
1
1
0

1
1
1
0
0
1

0
1
1
0
0
0

1
0
1
0
1
1

V
W
X
Y
Z

Checksum
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error for this problem. If the DED parity computation is even, and the SEC computation indicates
there is an error, then there must be at least a double bit error.

9.8 CRC = 101. The entire frame to be transmitted is 101100110 101.

9.9 32 bits

9.10 Class B

9.11 27 + 214 + 221

9.12 63 ns for bit-serial transfer, 32 ns for word-parallel. The word-parallel version requires 32 times
as much hardware, but only halves the transmission time, as a result of the time-of-flight delay
through the connection.

9.13 [Placeholder for solution.]

SOLUTIONS TO CHAPTER 10 PROBLEMS

10.1 CPIAVG = 1 + 5(.25)(.5) = 1.625 × 10 = 16.25 ns

Execution efficiency = 1/1.625 = 62%

10.2

No, for the ARC architecture, we cannot use %r0 immediately after the st because st needs two cycles
to finish execution. If we did reuse %r0 in the second line, then a nop (or some other instruction that
does not produce a register conflict) would have to be inserted between the st and sethi lines. How-
ever, for the SPARC architecture, the pipeline stalls when a conflict is detected, so nops are never actually
needed for delayed loads in the SPARC. The nop instruction is needed for delayed branches in the
SPARC, however.

10.3 [Placeholder for solution.]

10.4 [Placeholder for solution.]
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10.5

10.6

10.7 n=p=6: complexity = 306. n=p=2: complexity = 180. n=p=4: complexity = 231. n=p=3: complex-
ity = 200.

10.8 15

SOLUTIONS TO APPENDIX A PROBLEMS

A.1

x2 y2xy

2xy

2

x2 + y2

x2 + 2xy + y2

* * *

x y

*+

+

S 1

0.05˙ 1 0.05–
100

-------------------+
------------------------------------ 16.8= =

16.8
100
---------- .168, or 16.8%=

A

B
AB
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A.2

A.3

A.4

A.5 18.

A

B
A + B

OR

A

NOT

A

A

B
AB

AND

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
0
1
0
1
1
1

F

1
0
1
0
0
0
1
0

G

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
1
0
1
0
0
1

XOR
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A.6

A.7

A.8 Not equivalent: 

f(A,B,C)

A B C

A B C

A B C

A CB

g(A,B,C,D,E)

B C E D A

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
1
0
0
0
0
1

F

0
0
0
1
0
0
1
0

G
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Alternatively, we can also disprove equivalence algebraically:

A.9

A.10

A.11

g A B C, ,( ) A C⊕( )B=

a AC AC+( )B=

a ABC ABC+=

a f≠ A B C, ,( )

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
1
0
0
0
0
0
0

F

F(A,B,C) = ABC

a0b0a1b1a2b2a3b3

A = B

F

x0

x1

x2

x3

x4
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A.12

A.13

A.14

A.15

A B

F0

00

01

10

11

0

0

1

1

A B

F1

00

01

10

11

0

1

0

0

A B

M

00

01

10

11

0

1

C

A

B

00

01

10

11

A ⊕ B

A

B

000

001

010

011

F(A,B,C)

100

101

110

111

C

G(A,B,C)
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A.16

A.17

A.18

d0 0
1d1

d2 0
1d3

d4 0
1d5

d6 0
1d7

C

0
1

0
1

0
1

B A

F(A,B,C)

0
1

B

A

0
1

1
AB

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

1
0
0
0
1
1
1
0
1
1
1
1
1
0
1
1

b

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

b

0001

0010

0011

0100

0101

0110

0111

0000

A B C D

1

0

0

0

1

1

1

0

1001

1010

1011

1100

1101

1110

1111

10001

1

1

1

1

0

1

1
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A.19 There are a few solutions. Here is one:

A.20

F

0001

0010

0011

0100

0101

0110

0111

0000

A B C 0

0

1

1

0

1001

1010

1011

1100

1101

1110

1111

10000

0

0

1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

d
0
0
d
1
d
d
d
1
d
d
d
d
d
d
d

X

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

d
0
1
d
0
d
d
d
1
d
d
d
d
d
d
d

Y
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A.21

A.22

A.23

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

b c

0
0
0
0
1
1
1
1

a

0
0
0
0
0
0
1
1

u

0
0
0
0
1
1
0
1

v

0
0
0
1
0
1
0
0

w

0
0
1
0
0
0
1
0

x

0
0
0
0
0
0
0
0

y

0
1
0
1
0
1
0
1

z

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

c d

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

b

1
0
1
1
1
1
1
1
0
0
1
0
1
0
1
1

f

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

a

a b

f

c

001

010

011

100

101

110

111

000d

1

1

1

0

1

d

d

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

b1 b0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

a0

0
0
0
d
1
0
0
d
1
1
0
d
d
d
d
d

z1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

a1

1
0
0
d
0
1
0
d
0
0
1
d
d
d
d
d

z0

0
0
0
1
1
1
2
2
2

0
1
2
0
1
2
0
1
2

A B

1
0
0
2
1
0
2
2
1

Z
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A.24

A.25 [Note: This solution is for the wrong problem. This is a proof of DeMorgan’s theorem, not the
absorption theorem.]

A.26 No, an S-R flip-flop cannot be constructed this way. There is no way to force an output high or
low based only on S or R. While the combination of 11 on the inputs provides a quiescent state, the
result of applying 00 is undefined and 10 and 01 are unstable.

A.27 [Placeholder for missing solution.]

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

b c

0
0
0
0
1
1
1
1

a

0
1
0
1
0
0
1
1

0
1
0
1
0
0
1
1

ab + ac + bc ab + ac

y y+ 1=

x y y+ + 1=

1x y y+ + 1=

x x+( ) x y+( ) y+ 1=

x xy y+ + 1=

xy x y+( )+ 1=

x y+( ) x y+( )+ xy x y+( )+=

x y+( ) xy=
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A.28

A.29

01/10
00/00

10/01

01/01
00/00

10/10

X

Y

00/00
11/11

10/10

01/10
Z

A = B

A > B

A < B

A B GE LT

11/11

11/11

A

B

GE

LT

0/0 1/0

1/1

0/1

Previous 
input is 0

Previous
input is 1

BA

A/0 B/1

A/1 B/0

A

B

0 1
x

P.S.

0/0 1/1

0/1 1/0

A:0

B:1

0 1
x

P.S.

CLK

QD

Q

x
S z

z = xst  +  xst

st+1 = xst  +  xst
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A.30

A.31

A.32

A

B

C

D

E

0/0

0/0

1/0

0/0

1/0

0/0

0/1

1/0

1/1

1/0

No inputs seen yet

Meanings of States

A
B
C
D

E

Seen '0'
Seen '1'
Seen '01'
Seen '11'

X

0 1

A B/0 C/0

P.S.

Input

B
C
D
E

B/0 D/0
B/0 E/0
B/0 E/1
B/1 E/0

A

B

C

01/0

10/1

Meanings of States
X = YA

B
C

X < Y

X > Y

01/0 10/1

00/1
10/1
11/1

00/0
01/0
11/0

00/0
11/0

XY Z

00/00
01/10

00/00
01/01

X

Y

00/00
11/11

21/21

01/10
Z

A = B

A > B

A < B

A BGE LT

02/02

02/20

22/22

20/20
10/10

02/20
12/21

10/01
11/11

10/10
11/11
12/12

12/21

20/02
21/12

20/20
21/21
22/22

22/22
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A.33

A.34

00/0
00/1

10/1

01/0

Even 
parity

Odd 
parity

11/0

10/0

BA

01/1

11/1

X
0 1

A B/0 C/0

P.S.

Input

B
C
D

D/0 E/0
E/0 D/0
A/0 A/0

X
0 1

A:000 001/0 010/0

P.S.

Input

B:001
C:010
D:011

011/0 100/0
100/0 011/0
000/0 000/0E A/1 A/1

E:100 000/1 000/1

s0 s1 s2

D Q

s0

D Q

s1

D Q

s2

CLK

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111
Z

X
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A.35 There are a number of solutions. Here is one:

A.36 delays using a balanced tree.

SOLUTIONS TO APPENDIX B PROBLEMS

B.1

M

A B C

A B C

A B C

A B C

A B C

33Nlog

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

11

1

111

1

1

1

1

1

10
AB

1

CD

10

1

1 1

1

1

1

00 01

01

00

f (A,B,C,D) = AB + CD + BD +
AD + BC + AC

g(A,B,C,D) = ABCD + BD + CD +
AB + AD + AC+ BC
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B.2

B.3 No. The don’t cares are used during the design process. Once the design
is fixed, the don’t cares assume values of either 0’s or 1’s.

B.4

B.5

01 11

1

01

11

d

11

11

0 011

0

0

0

0

0

10
AB

d

CD

10

d

0

0

d

0

00 01

01

001

10

1000
AB

CD

00

SOP Form: POS Form:f (A,B,C,D) = AB + BD f (A,B,C,D) = AD + B
f (A,B,C,D) = AD + B

= AD B
= A + D B

000
ABC

001 011 010 110 111 101 100

1

1

1

1

1

1

1

11

D

0
00

AB
01 11 10

1

1

1

1

1 1

01

CD

00

11

10

1 1

F(A,B,C,D) = BC + BC

F(A,B,C,D) = C

0
A

1

D0

1

B

0

D1

D2

D3

F = ABD0 + ABD1 + ABD2 + ABD3
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B.6

All prime implicants are essential, so we do not construct a reduced table of
choice.

B.7

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

C D

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

B

0
0
d
1
0
1
d
1
0
0
1
0
0
1
0
1

F

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A

1
1
0
1
1
1
0
1

0
1
1
0
0
1
1
1

C D

0
0
1
1
0
1
1
1

B

0
0
0
0
1
0
1
1

A

√
√
√
√
√
√
√
√

Initial setup

1
1
1
1
_
0
1
1
_

_
0
0
1
1
1
_
1
1

C D

0
_
0
_
1
1
1
1
1

B

0
0
_
0
0
_
0
_
1

A

√
√
*
√
√ 
√
√ 
√
√

After first
reduction

1
_

_
1

C D

_
1

B

0
_

A

*
*

After second
reduction

_

0

_

0

_

1

1

1

_

0

_

1

0011 0101 0111 1010 1101 1111

MintermsPrime
Implicants

√

√

√√√

√

√

*

*

*

f A B C D, , ,( ) BCD AC BD+ +=

_

_

1

_

1

1

0

_

1

1

1

0

1

0

_

Prime
Implicants

√

m3  m5     m7   m13  m14  m15 m5    m7   m10   m13  m14  m15 m0   m4   m10   m14   m15

F0(A,B,C,D) F1(A,B,C,D) F2(A,B,C,D)Min-
terms

F0

F2

F0,1

F1,2

F0,1,2

√ √

√

√

√ √

√ √

√√√√

0

0

_

1

1

*

*

*

*

*

√

√√ √ √ √

√

√ √

Function Prime Implicant

F0

F1

F2

F0,1

F0,2

F1,2

F0,1,2

0_11, 111_, _1_1
1_10, _1_1, 111_
0_00, 111_, 1_10
111_, _1_1
111_
111_, 1_10
111_

Function Prime Implicant

F0

F1

F2

F0,1

F0,2

F1,2

F0,1,2

0_11
none
0_00
_1_1
none
1_10
111_

Reduce by eliminating prime 
implicants covered by higher 

order functions
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B.8

B.9

B.10

00 01 11

1 1

1

1

10
AB

C

0

1

F(A,B,C)

A B C

A CB

F(A, B, C) = ABC + AC + BC

A C

B C

C D

00

01

10

11

0

1

1

1

A B

F

00

01

10

11

0
1

0

F(A,B,C,D) = AB(CD + CD + CD) + AB

P0 = (ABCDEFG)

P1 = (AB)(CD)(EF)(G)

P2 = (AB)(CD)(E)(F)(G)

P3 = (AB)(CD)(E)(F)(G) √
A' B' C' D' E'

X
0 1

A' B'/0 E'/0

Present state

Current input

B'
C'
D'
E'

A'/0 B'/1
A'/1 C'/0
B'/1 D'/0
C'/1 E'/1
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B.11

B.12

B.13

B.14

P0 = (ABCDE)

P1 = (A)(BD)(CE)

P2 = (A)(BD)(CE) √
A' B' C'

XY
00 01

A' A'/0 B'/0

Present state

Current input

B'
C'

A'/0 B'/1
C'/1 B'/0

10

C'/0
B'/0
B'/0

11

B'/0
B'/1
C'/1

P0 = (ABCDEFG)

P1 = (AEFG)(BCD)

P3 = (AFG)(E)(BCD) √
A' B' C'

X
0 1

A' C'/0 B'/2

Present state

Current input

B'
C'

A'/0 B'/2
C'/2 A'/1

2

A'/1
C'/1
C'/0

P2 = (AFG)(E)(BCD)

CLK

Q2

Q1

Q0

CLK

QT

Q
S

X

Y

Z
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B.15

B.16

QD

Q
Y

X

CLK

QD

Q
Z

W

0

11

0

1

0

X

0
YZ

10

1

d

0 1

01

00

d

1

11

1

0

0

X

0
YZ

10

0

d

0 1

01

00

d

1

11

1

0

1

X

0
YZ

10

1

d

0 1

01

00

d

Yt+1 = XZ + XYt W = XYt + XYt + ZZt+1 = XYtZ + XYt

CLK

QD

Q
S

J
K
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