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Advanced Linear Algebra

Chapter 5:

5.1 Real Vector Spaces

Definition: Let V be an arbitrary nonempty set of objects on which two operations are defined: addition, and multiplication by scalars (numbers). By addition we mean a rule for associating with each pair of objects u and v in V an object u+v, called the sum of u and v; by scalar multiplication we mean a rule for associating with each scalar k and each object u in V an object ku, called the scalar multiple of u by k. If the following axioms are satisfied by all objects u, v, w in V and all scalars k and m, then we call V a vector space and we call the objects in V vectors.

1- If u and v are objects in V, then u+v is in V.

2- u+v = v+u.

3- u+(v+w) = (u+v)+w.

4- There is an object 0 in V, called a zero vector for V, such that 0+u=u+0=u for all u in V.

5- For each u in V, there is an object –u in V, called a negative of u, such that u+(-u) = (-u)+u = 0.

6- If k is any scalar and u is any object in V, then ku is in V.

7- k(u+v) = ku + kv.

8- (k+m)u = ku + km.

9- k(mu) = (km)u.
10- 1u = u.

5.2 Subspaces

Definition: A subset W of a vector space V is called a subspace of V if W is itself a vector space under the addition and scalar multiplication defined on V.

Theorem 5.2.1: If W is a set of one or more vectors from a vector space V, then W is a subspace of V if and only if the following conditions hold:

1- If u and v are vectors in W, then u + v is in W.

2- If k is any scalar and u is any vector, then ku is in W.

Theorem 5.2.2: If Ax = 0 is a homogeneous linear system of m equations in n unknowns, then the set of solution vector is a subspace of 
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Definition: A vector w is called a linear combination of the vectors v1, v2, … vR, if it can be expressed in the form w = k1 v1 + k2 v2 + … + kR vR where k1, k2, … , kR are scalars.

Theorem 5.2.3: If v1, v2, … , vR are vectors in a vector space V, then:
(a) The set W of all linear combinations of v1, v2, …, vR is a subspace of V.

(b) W is the smallest subspace of V that contains v1, v2, …, vR in the sense that every other subspace of V that contains v1, v2, …, vR must contain W.

Definition: If S = { v1, v2, …, vR } is a set of vectors in a vector space V, then the subspace W of V consisting of all linear combinations of the vectors in S is called the space spanned by v1, v2, …, vR, and we say that the vectors v1, v2, …, vR span W. To indicate that W is the space spanned by the vectors in the set S = { v1, v2, …, vR }, we write W = span( S ) or W = span{v1, v2, …,vR}

Theorem 5.2.4: If S = { v1, v2, …, vR } and S’ = { w1, w2, …, wK } are two sets of vectors in a vector space V, then span{ v1, v2, …, vR } = span{ w1, w2, …, wK } if and only if each vector in S is a linear combination of those in S’ and each vector in S’ is a linear combination of those in S.

5.3 Linear Independence

Definition: If S = {v1, v2, …, vR} is a nonempty set of vectors, then the vector equation k1v1 + k2v2 + … + kRvR = 0 has at least one solution, namely k1 = 0, k2 = 0, …, kR = 0
If this is the only solution, then S is called a linearly independent set. If there are other solutions, then S is called a linearly dependent set.

Theorem 5.3.1: A set S with two or more vectors is:
(a) Linearly dependent if and only if at least one of the vectors in S is expressible as a linear combination of the other vectors in S.

(b) Linearly independent if and only if no vector in S is expressible as a linear combination of the other vectors in S.

Theorem 5.3.2: 

(a) A finite set of vectors that contains the zero vector is linearly dependent.

(b) A set with exactly two vectors is linearly independent if and only if neither vector is a scalar multiple of the other.

Theorem 5.3.3: Let S = {v1, v2, …, vR} be a set of vectors in 
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. If r > n, then S is linearly independent.

Theorem 5.3.4: If the functions f1, f2, … fN have n – 1 continuous derivatives on the interval 
[image: image3.wmf])

,

(

¥

-¥

, and if the Wronskian of these functions is not identically zero on 
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, then these functions form a linearly independent set of vectors in 
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5.4 Basis and Dimension

Definition: If V is any vector space and S = { v1, v2, …, vR } is a set of vectors in V, then S is called a basis for V if the following two conditions hold:

(a) S is linearly independent.

(b) S spans V.

Theorem 5.4.1: If S = { v1, v2, …, vR } is a basis for a vector space V, then every vector v in V can be expressed in the form v = c1v1 + c2v2 + … + cNvN in exactly one way.

Definition: A nonzero vector space V is called a finite-dimensional if it contains a finite set of vectors { v1, v2, …, vR } that forms a basis. If no such set exists, V is called infinite-dimensional. In addition, we shall regard the zero vector space to be finite-dimensional.
Theorem 5.4.2: Let V be a finite-dimensional vector space and let { v1, v2, …, vR } be any basis.

(a) If a set has more than n vectors, then it is linearly dependent.

(b) If a set has fewer than n vectors, then it does not span V.

Theorem 5.4.3: All bases for a finite-dimensional vector space have the same number of vectors.

Definition: The dimension of a finite-dimensional vector space V, denoted by dim(V), is defined to be the number of vectors in a basis for V. In addition, we define the zero vector space to have dimension zero.

Theorem 5.4.4: Plus/Minus Theorem: Let S be a nonempty se of vectors in a vector space V:

(a) If S is linearly independent set, and if v is a vector in V that is outside span(S), then the set S 
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{v} that results by inserting v into S is still linearly independent.
(b) If v is a vector in S that is expressible as a linear combination of other vectors in S, and if S – {v} denotes the set obtained by removing v from S, then S and S – {v} span the same space; that is, span(S) = span(S – {v})

Theorem 5.4.5: If V is a n-dimensional vector space, and if S is a set in V with exactly n vectors then S is a basis for V is either S spans V or S is linearly independent.

Theorem 5.4.6: Let S be a finite set of vectors in a finite-dimensional vector space.

(a) If S spans V but is not a basis for V, then S can be reduced to a basis for V by removing appropriate vector S.

(b) If S is a linearly independent set that is not already a basis for V, then S can be enlarged to a basis for V by inserting appropriate vector into S.

Theorem 5.4.7: If W is a subspace of a finite-dimensional vector space V, then dim(W) 
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 dim(V); moreover, if dim(W) = dim(V), then W = V.
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